Rise ' n ' Shine Convent School - Dhamdha

II - PERIODIC ASSESSMENT - 2020

Class - XI
Subject - Mathematics
Date:-10/01/2020 Time:-3 hrs
Max. Marks : 80
Roll No:
General Instructions :-

1. All questions are compulsory.
2. The question paper consists of 36 questions divided into four Sections A, B, C and D SectionA comprises of 20 questions of one mark each, Section - B comprises of 6 questions of 2 marks each, Section - C comprises of 6 questions of 4 marks each and Section - D comprises of 4 questions of 6 marks each
3. Use of calculator is not permitted.

SECTION - A

(Q1-Q10 are multiple choice type questions. Select the correct option)
Q. 1 The value of $\lim _{x \rightarrow 0}\left[\frac{(x+1)^{5}-1}{x}\right]$ is
(A) 0
(B) 4
(C) 5
(D) 3
Q. 2 The derivative of $\sin ^{2} x$ with respect to x is
(A) $\sin 2 x$
(B) $\cos 2 x$
(C) $\sin ^{3} x$
(D) $2 \cos x$
Q. 3 The domain of $f=\sqrt{x^{2}-4}$ is
(A) $[-2, \infty]$
(B) $[2, \infty]$
(C) $[-2,2]$
(D) $\mathrm{R}-(-2,2)$
Q. 4 If $3 \tan ^{2} \theta=1$ then the general value of θ,where $n \in Z$
(A) $2 n \pi \pm \frac{\pi}{3}$
(B) $n \pi \pm \frac{\pi}{3}$
(C) $n \pi+(-1)^{n} \frac{\pi}{3}$
(D) $n \pi \pm \frac{\pi}{6}$
Q. 5 The value of i^{108} is
(A) 0
(B) 1
(C) i
(D) $-i$
Q. 6 The solution of given inequalities $3(2-x) \geq 2(1-x)$

CBSEGuess.com

(A) $(-\infty,-4]$
(B) $[4, \infty)$
(C) $(-\infty, 4]$
(D) $[0,4]$
Q. 7 How many numbers are lying between 100 and 1000 which can be formed with the digits $0,1,2,3,4,5$ if repetition of digits is not allowed.
(A) 100
(B) 120
(C) 60
(D) 300
Q. 8 The coefficient of x in middle term of the expansion of $[2 x-3]^{6}$ is
(A) 2160
(B) -4320
(C) 4860
(D) -4220
Q. 9 The $10^{\text {th }}$ term of the sequence $2,4,8,16$ is
(A) 512
(B) 2048
(C) 4096
(D) 1024
Q. 10 The slope of the line $2 x+2 \sqrt{3} y-5=0$ is
(A) $-\frac{1}{\sqrt{3}}$
(B) 2
(C) $\frac{5}{2}$
(D) $-\sqrt{3}$

(Q .No 11 to Q. No 15 fill in the blank)

Q. $11 \frac{d}{d x} x^{5}=\ldots \ldots \ldots \ldots \ldots$
Q. 12 The locus of a point in a plane, whose distance from a fixed point is equal (1M) to its distance from fixed straight line is called \qquad
Q. 13 The coordinate of centre of circle $x^{2}+y^{2}-8 x+4 y-5=0$ is
Q. 14 Let $A=\{1,2,3,\{3,4\}\}$.Insert the appropriate symbol \in or \notin in the (1M) blank space : $\{3,4\}$. A
Q. 15 The coordinate of foot of perpendicular drawn from the point (1, $3,-2$) to $y z$-plane is \qquad
(Q16-Q20) Direct answer the following questions)
Q. 16 Find the last term in the expansion $\left(2 x^{2}-\frac{1}{x}\right)^{20}$
Q. 17 Find the perpendicular distance from origin to the line $3 x+4 y=20$
Q. 18 Which term in the sequence $15,19,23$, is 63 ?
Q. 19 If ${ }^{\mathrm{n}} C_{n-8}={ }^{\mathrm{n}} C_{5}$ then find value of n

CBSEGuess.com

Q. 20 Evaluate $\sec 1020^{0}$

OR

Find the maximum value of a if $a=1-\cos x$

SECTION - B

Q. 21 For the set A and B describe below into theoretical notation in set
(i) B but not A
(ii) neither A nor B
Q. 22 Find the value of the expression $\frac{\tan ^{2} 15^{0}-1}{\tan ^{2} 15^{0}+1}$

OR

Find the value of $\tan 1^{0} \tan 2^{0} \tan 3^{0} \tan 4^{0} \ldots \ldots \ldots \ldots \quad \tan 89^{0}$
Q. 23 From a committee of 8 person, in how many ways can we choose a chairman and vice chairman assuming one person can not hold more then one position?
Q. 24 Find the coefficient of x^{5} in expansion of $(x+3)^{8}$
Q. 25 The sum of n terms of two arithmetic progressions are in ratio $3 n-1: 3 n+1$ Then the ratio of their $5^{\text {th }}$ terms
Q. 26 If origin is the centroid of the triangle whose vertices are $(2 a, 2,6)$ $(-4,3 b,-10)$ and $(8,14,4)$ find the value of a and b

OR
Find the coordinate of the point which divides the line joining the points $(-2,0,6)$ and ($10,-6,-12$)internally in ratio $5: 1$

SECTION - C

Q. 27 Find the coordinate of foot of perpendicular drawn from the point ($-1,3$) (4M) to the line $3 x-4 y-16=0$
Q. 28 Find the domain and range of the function $f(x)=\frac{x+1}{x-2}$
Q. 29 Find the sum of n terms of the series

$$
\begin{gather*}
1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+\cdots \ldots \ldots \ldots \ldots \tag{4M}\\
\hline \ldots \ldots
\end{gather*}
$$

If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P. and $a^{1 / x}=b^{1 / y}=c^{1 / z}$, prove that $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in A.P
Q. 30 The second ,third and fourth term in the binomial expansion $(x+a)^{n}$ are

CBSEGuess.com

240,720 and 1080 respectively. Find x, a and n
Q. 31 Solve the following system of inequalities graphically:
$3 x+2 y \leq 150, x+4 y \leq 80, x \leq 15, x \geq 0, y \geq 0$
Q. 32 If a parabolic reflector is 20 cm in diameter and 5 cm deep find its focus.

OR

Using first principle find the derivative of $f(x)=\cos x$

SECTION - D

Q. 33 Find the distance of the point $(3,5)$ from the line $2 x+3 y-14=0 \quad(6 \mathrm{M})$ parallel to the line $x-2 y-1=0$
Q. 34 Prove that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}=\frac{1}{16}$

OR

Find the modulus and arguments of the following complex number and convert into polar form $\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$
Q. 35 How many words, with or without meaning, can be formed using letter of (6M) word EXCUTIVE assuming that no letter is repeated, if
(i) Vowels and Consonants are come together
(ii)The word start with T and end with E
Q. 36 Prove that by Principle of Mathematical Induction $p(n)=n(n+1)(n+5) \quad(6 \mathrm{M})$ is multiple of 3 for every $n \in N$

